Solomon Marcus : Singurătatea matematicianului

O lume inefabilă

Este vorba despre lumea matematicii, o lume inefabilă, în primul rând pentru că nu se poate defini. Când li se cere definiţia, matematicienii fac un ocol şi răspund prin a indica unele atribute ale domeniului lor; o definiţie directă, cât de cât scurtă, a matematicii este evitată. Din acest punct de vedere, matematica se află în situaţia artei, la fel de imposibil de definit. Există şi un alt mod de a ocoli definiţia: prin indicarea diferitelor ei compartimente, de exemplu, aşa cum figurează ele în marile reviste de referate. Acest ocol este folosit uneori şi atunci când trebuie explicat ce este arta.

Există şi un alt fel în care se manifestă inefabilul matematicii: prin contrastul dintre modul în care se prezintă matematica în lume şi modul în care arată viaţa ei ascunsă. La suprafaţă, matematica este dominată de deducţii, de formule şi de algoritmi; ea procedează de la definiţii, leme şi teoreme la demonstraţii, corolare şi exemple. În căutările şi frământările ei, ea este străbătută de întrebări, încercări, ezitări, greşeli, eşecuri, tatonări, analogii, asocieri de tot felul, amintiri din ce-am trăit sau ce-am visat cândva, reprezentări vizuale, testări pe exemple particulare, mirări, intuiţii şi emoţii. Simptomatic pentru discrepanţa dintre aparenţa şi substanţa matematicii este distanţa, care poate fi foarte mare, dintre momentul găsirii unui rezultat şi cel al confirmării sale prin demonstraţie. Totul se întâmplă ca în celebra reflecţie a lui Blaise Pascal; pentru a porni în căutarea unui lucru, trebuie mai întâi să-l găsim. Nu este nicio contradicţie aici. Găsirea este abductivă, iar căutarea urmăreşte o confirmare deductivă. Ordinea în care matematica se prezintă în lume este în bună măsură opusă ordinii istorice. De exemplu, noţiunile de limită, continuitate, derivată şi integrală sunt învăţate în această ordine, dar ordinea în care ele s-au cristalizat este inversă acesteia.

  1. Călinescu aprecia că istoria literară este o ştiinţă inefabilă. Matematica este inefabilă, are, printre diferitele ei trăsături, şi unele comune cu ştiinţa, fără însă a putea fi inclusă printre ştiinţe, deoarece nu se ocupă, prin destinaţia ei, de o anumită felie a naturii sau a societăţii. Aşa cum am mai observat, matematica are un potenţial ştiinţific, are şi unul artistic, are şi unul filozofic; dar ea rămâne, în concertul culturii, o voce separată, inconfundabilă. O bună parte a lumii academice îi respectă acest statut.

Pornind de la o întrebare a lui Rilke

În celebrele sale Scrisori către un tânăr poet, pe care le-am citit ca adolescent, Rainer Maria Rilke îl sfătuia pe interlocutorul său, atras de magia versurilor, să persiste în a scrie poezie numai dacă simte că nu ar putea trăi altfel. Cercetarea matematică nu este cu nimic mai puţin exigentă şi selectivă, chiar dacă severitatea selecţiei este aici de o altă natură. Întrebarea lui Rilke devine inevitabilă: Să faci cercetare matematică numai dacă simţi că nu ai putea trăi altfel? Paul R. Halmos a dat undeva un răspuns afirmativ unei întrebari similare. În ceea ce mă priveşte, un singur lucru pot spune: că nu mi-aş fi putut imagina viaţa altfel decât într-o activitate de cercetare iar, în măsura în care aş fi fost împiedicat s-o fac, m-aş fi considerat de-a dreptul nenorocit.

http://edituraspandugino.ro/stiinte-socio-umane-studii-interdisciplinare/85-singuratatea-matematicianului.html

Lasa un comentariu

Adresa ta de email nu va fi publicată. Câmpurile obligatorii sunt marcate cu *